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EFFECT OF REDUCED COMPUTER PRECISION ON A MIDCOURSE
NAVIGATION AND GUIDANCE SYSTEM USING OPTIMAL
FILTERING AND LINEAR PREDICTION

By Ieonard A. McGee
Ames Research Center

SUMMARY c;?//zﬁj E; 67

Reduced precision, defined as the use of computer words whose precision
is less than the maximum single precision length of 27 binary bits, is
applied to the lunar midcourse navigation and guldance scheme previously
reported in NASA publications TR R-135 and TN D-1208. With the same computer
program, the evaluation in this report was based on the outbound leg of an
earth-moon trajectory. A fixed schedule of L5 observations and 3 velocity cor-
rections was executed each time the trajectory was traversed with the preci-
sion reduced in one or more of the following areas: (l) the estimated
trajectory, (2) the optimal filter, (3) the space-angle computations, (4) the
transition matrix, or (5) the guidance equations. This procedure was followed
down to the level of precision at which the estimated trajectory could no
longer be integrated numerically.

The mathematical operations embodied in the optimal filter are shown to
be essentially unaffected by the reduced precision over the range studied.
This invariance, as determined by the behavior of the covariance matrix of the
guidance errors in the estimated state, P, does not imply that P i1s a cor-
rect representation of the existing uncertainties. In fact, as the precision
is reduced, the uncertainties indicated by the P matrix become an increas-
ingly conservative representation of those that actually exist. This is due
to the failure of the error propagation model to account for the increased
errors in the estimated state that occur during the transition period between
observations and velocity corrections. When no corrections are made to
account for the increased errors, as in this study, it is shown that the opti-
mal filter will give too low a weight to the information gained from space-
angle observations. The resulting errors in the estimate of the vehicle's
state may, for large precision reductions, accumulate until they are exces-
sively large. Velocity corrections are more poorly done as the precision is
reduced because they are dependent on the estimate of the vehicle's state and
on a prediction matrix which projects the errors at any time into errors at
the final time. This is shown to be due, at least in part, to the degradation
of the prediction matrix which, in the lower precision cases, was affected to
the extent that the determinant of one of its submatrices became negative near
the end of the trajectory.
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INTRODUCTION

References 1 and 2 present the results of a digital computer simulation
of the midcourse phase of a circumlunar navigation study. The Kalman-Schmidt
optimal filter (refs. 2, 3, and 4) is used to process simulated pilot-observed
data (derived from the space geometry angles relating the vehicle to the earth
and the moon) in order to produce an optimal estimate of the vehicle's posi-
tion and velocity. With this information and a transition matrix relating
end-point deviations to present deviations and knowledge of the state of a
reference trajectory, the system computes and makes velocity corrections in
the attempt to guide to a fixed end point at a given time.

In certain situations it is desirable to simulate all or part of the
midcourse navigation on a digital computer which uses words of less precision
than the 27 binary bits used in the studies reported in references 1 and 2.
For an intelligent choice of word length, it is necessary to know the degrada-
tion of performance due to decreased accuracy. It is the aim of this report
to provide this information and at the same time to determine whether the
original studies were done with words of sufficient precision.

SYMBOLS
a column matrix of deviations in observed angles
A prediction matrix: a transition matrix relating devilations at the

end point to present deviations

Al,Az,W
A }» 3 X 3 submatrices of A
2
3774
F matrix of partial derivatives of the equations of motion with respect
to the state variables
H matrix relating observed angles and vehicle state
I identity matrdix
X weighting matrix
N[u,0°] normally distributed with mean u and variance o2
P covariance matrix of estimation error vector, E[iiT]
P! value of P after an observation
PysPy,
3 X 3 submatrices of P
377 4
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q observational error vector

Q covariance matrix of the observational errors, E[qu]
r position deviation from reference

T error in estimate of r

T estimate of

rms root mean square

R position vector (subscripts indicate origin and end)
R magnitude of R

Rg earth radius

Ry moon radius

t general time arguments

te end-point time

tk time of the kth observation

v velocity deviation from reference

v estimate of v

v error in estimate of v

Vrms rms uncertainty of indicated velocity correction
AVG velocity-vector increment to be gained

|ANG| magnitude of AV,

X six vector of position and velocity deviation from a reference
trajectory
b estimate of x

error in estimate of x, x-X

kX

X,Y,Z space position coordinates

y observation of space angles, Hx + g

g

estimate of y; HX



trace [ ]

The digital computer program used in this study is a modified version of
the FORTRAN IT program for the midcourse navigation studies reported in

declination of observed body

right ascension of observed body

one-half subtended angle of observed body
increment

standard deviation of subscript random variable

transition matrix relating state at t, to state at t;

Notation Conventions
first-time derivative of ( )
transpose of matrix ( )
inverse of metrix ( )
expected value of [ ]

sum of the diagonal elements of [ ]

Subscripts
end point
earth
at the kth observation
moon
sun

vehicle

COMPUTER PROGRAM FOR SIMUIATION

General Description

references 1 and 2.

The reference mission assumed for this study is the outbound leg of an
earth-moon trajectory requiring about 78 hours for completion.

L
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injection conditions for the space vehicle are assumed, and it is the function
of the navigation and guidance system to cause the space vehicle to arrive at
the reference end point with a minimum of position error. To determine posi-
tion and velocity the navigation system will process observations of the earth
and moon made from the vehicle at preselected times. As a result of the knowl-
edge gained from the observations, the system will generate an estimate of

the state (position and velocity). On the basis of this estimate, the guid-
ance system will make imperfect corrections to the vehicle velocity in an
attempt to cause the vehicle to arrive at the reference end point (perilune).

Twenty-seven second-order ordinary differential equations comprising
three trajectories and six sets of three perturbation equations are integrated
simultanecusly. The integration subprogram utilizes a fourth-order Runge-
Kutta method for starting and a Cowell "second-sum' method based on sixth dif-
ferences for continuation. Double precision is used internally to control
round-off error.

The three trajectories are (1) the previously determined reference tra-
jectory, (2) the actual trajectory giving the true state of the space vehicle,
and (3) the estimated trajectory giving the current estimate of the vehicle
state. Comparison of these three trajectories allows evaluation of changes in
the system performance resulting from the reduction of precision in certain
specified areas of computation.

Program Areas in Variable Precision

In order to study the effects of reduced precision in the various
portions of the computations, five masks were developed which allowed indepen-
dent control of the precision of each of the portions.

The five levels of precision maintained with the masking technique are
in addition to the normal 27-bit precision of the IBM T094. Mask 1 is used in
conjunction with the optimal filter and its weighting matrix. Mask 2 is used
to control the precision of the estimated trajectory. Mask 3 controls the
precision of the space angles computed from the estimated state and the space-
angle geometry. Mask 4 controls the precision of the matrix F, the perturba-
tion equations, and the transition matrix, ¢. Mask 5 controls the precision
with which the prediction matrix, A, is updated, the precision of the guidance
equation computations, and the computations involved in the velocity correc-
tion model used to implement a velocity correction. Full 27-bit precision is
used on those calculations that provide information about the performance of
the system and on calculations involved with the actual and reference trajec-
tories. In addition, the numerical integration subroutine used to integrate
the equations of motion and the perturbation equations carried out internal
computations in Sk binary bit precision (double precision) as mentioned before.
This was true regardless of the effective mantissa length of the second deriv-
atives computed from the equations of motion and the perturbation equations or
the initial conditions. A discussion of the masking operations used to reduce
the effective word length is given in appendix A.



Processing an Observation

The digital simulation of the complete system is represented in figure 1,
which also shows in dashed boxes those areas which are maintained at the pre-
cisions specified by masks 1, 2, 3, 4, and 5. A description of the operation
of the system and the equations used is given in the remainder of the section.
The circled numbers in the text refer to corresponding numbers in figure 1 and
are used to show which of the boxes is being discussed at the moment.

Updating the trajectory.- When an observation has been made at time Ty

and is to be processed, numerical integration of the equations of motion is
initiated () for the actual, estimated, and reference trajectories simulta-
neously. Initial conditions for the actual and reference trajectories are
merely the states which existed at the time of the last observation, while the
estimated trajectory uses the new estimated state derived from processing the
last observation. Also, simultaneously with C) the sixfold perturbation
equations C) are integrated numerically from the time of the last observation,
tk-l’ to produce a transition matrix (). This process continues until the

computer time equals the time of the observation, ty. The integration is then
stopped and the covariance matrices are updated.

Updating of the covarilance matrices P(tk) and Q(tk).- The updating opera-

tion on P(ty) is accomplished through the use of linear prediction. This
method requires the assumption that small deviations of state at time ¢t can
be obtained from a linear combination of the deviations at time tk—l' In par-
ticular, when dealing with the deviation X(tk_l), the relationship may be
written in matrix form as follows:

R(ty) = oty sty )% () (1)

where ®(tk;tk_l) is the transition matrix from time tk—l to time tk‘ Sub -
stituting equation (1) into the definition

P(ty) = E[%(t, )& (¢, )] (2)

yields the following updating equation for P(ty_,):

P(ty) = (e stym 1 )P(ty )0 (g stycmy) (3)

The covariance matrix of the observational errors, Q(ty), is given by

a(ty) =10 & 0 (%)
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where 02 = 100 + (0.0017)% seconds of arc and 7 is 1/2 the subtended angle
of the observed body.

Thus the updating operations at QD consist of computing equation (3)
and forming Q(t).

Determination of the weighting matrix K(tk).- The next step is to com-

pute the H matrix followed by the weighting matrix K(tk). The matrix H(tk)
1s computed CD from the reference state values in the form

— _
% 3
0X oY oz
OB OB OB
H(t,) == =X £
() N 2
2 % X
X oY oz
& _

where the partial derivatives for the body being cbserved are given in table I.
The matrix K(tk) is then computed ® from

K(ty) = (o, )8 (6, ) [H(t, )P(t, JH (5,) + ()17 (6)

With X(ty) known, the P'(t,) matrix is then computed @ from
1( - -
P'(ty) = P(t,) - K(t )H(t, )P(ty) (7)

reflecting the change in P due to the observation just processed;l P'(tk) is
then stored. The delay unitl GD represents the storage of P'(tk) until the
time of the next observation.

Two quantities are derived from P' and are used to assess the system's
estimation performance. These two quantities, frms and v}ms’ are the standard

deviations of the error in estimating the magnitude of the position and veloc-
1ty deviations from the reference. They are defined by

1/ 2

I

4 1
Fos [trace (Pl )]

(8)

and

Vs [trace (P‘L')]l/2 (9)

1The order of matrix multiplication is from left to right. It has been
found that even 27 bits is not sufficient to preserve the non-negative definite
property of the P matrix if the order of multiplication is not preserved.



where Pl' and P4' are 3 X 3 submatrices of the P' matrix partitioned as
follows:

P! = (10)

Formation of the new estimated state.- In this system space-angle obser-
vations consist of the measurement of three angles related to the body (earth
or moon) under observation. These angles are o, the right ascension; B, the
declination; and 7, 1/2 of the angle subtended by the body.

The estimated angles are computed GD from the space geometry equations
(table II) using the state of the estimated trajectory. From the same space
geometry equations, and using the state of the actual trajectory, the actual
angles are computed . The difference between these two sets of angles is
found and noise, ggcaled according to Q(tk), is added. The result (:D multi-
plied by K(ty) éi) is added to the estimated state (:3 to produce & new
estimated state., This completes the estimation process.

Computation of the indicated velocity correction.- In order to provide
in-flight velocity correction capability, a prediction matrix, A(tg;ty), which

predicts the end-point state from the present state 1s computed (:) from

-1

) = At )0( ) (11)

At ;t 3t t, 5t

( e’ 'k e’ k-1 k’ k-1
Since the dnitial prediction matrix, A(te;to), is an input quantity, it is only
necessary to update the matrix at each observation. This requires finding

- -l .
@(tk,tk_l) from @(tk,tk_l).

Because @(tk;tk_l) is a symplectic matrix (ref. 5), it is invertable
merely by rearranging terms and changing signs. Thus, if @(tk;tk_l) is par-
titioned into 3 X 3 submatrices, then

(Dl (DZ
O(ty sty _,) = (12)
2
and
. o T _QZT
ot st ) = °* (13)
k’ "k-1 o T o T
-0, .

Therefore, there are no errors in this inversion process.
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With the difference between the estimated and reference states, r and ¥,
and the updated prediction matrix from equation (11), the indicated veloc-

ity correction, ANG, is computed from
—l !
AV = - [Az A : I:| (%] (14)
The magnitude of ANG is
T /2
|avg| = (Avg Av,) (15)

This concludes the computation cycle done at each observation and the
computer is now ready to process the next observation unless a velocity correc-
tion is to be executed. In this case the correction is made after a time delay
in order to simulate the time required to orient the vehicle along the desired
thrust vector. To accomplish this delay, processes C)_, C), and CD are
repeated until the computer time equals the time at which the velogity correc-
tion 1s to be made. At this time processes C) 3 , (:) , and are
repeated and computation control is passed to a separate program section for
the performance of the velocity correction maneuver.

Performing the Velocity Correction Maneuver

The flow lines representing velocity correction increments are shown
dashed in figure 1 to emphasize the occasional nature of the velocity correc-
tions. Also, these corrections are assumed to occur instantaneously so that
no position or time change need be accounted for during the maneuver.

Correction of the actual and estimated states.- The inputs to the veloc-
ity correction model are AVgy and the random execution errors which consist
of cutoff error and pointing error. The cutoff error for this study is
assumed to be random with normal distribution N[O,(QSV)Z] where oday = 1 per-
cent. The pointing error is resolved into errors in right ascension and
declination. Both of these angles are assumed random with distribution
N[0,02] where o = 1°. The output of the velocity correction model is
the correction applied to the actual state. The correction to the estimated
state is the measured value of that applied to actual state. The errors in
the measuring device are assumed to be random with distribution
N[0, (1 cm/sec)z] in each axis. These errors are added to the actual values at

to simulate the estimated values. The covariance matrix of these errors
in measuring the correction is added to the P matrix as follows:

(1 cm/sec)? 0 0
P, =P, + 0 (1 cm/sec)? 0 (16)
{_ 0 0 (1 cm/sec)?
.
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where Pé' is the value of P, Dbefore the velocity is corrected. This com-
pletes the velocity correction maneuver. The computer now continues on to
process the next space-angle observation.

Generation of Initial Prediction Matrices

To provide the initial prediction matrix A(te;ty) in equation (11) the
system was, prior to the actual run, commanded to run from injection to the
end point without observations or velocity corrections. This resulted in a
transition matrix @(tg.;ty), which was the initial value of A(te;to) desired
as an input for the actual run. A different A(te;to) was generated in this
way for each word length to be used.

RESULTS AND DISCUSSION

In this section the results of the effects of reduced computational pre-
cision are presented and discussed. The areas to be considered are:

1. The effect of word length on earth-moon trajectories.

2. The effect of word length on the optimal filter.

3. The effect of word length on the error propagation model.
L. The effect of word length on state estimation.

5. The effect of word length on guidance.

Effect of Word Iength on Earth-Moon Trajectories

In order to determine the effect of word length on trajectories from the
earth to the moon, the aperture in mask 2 was set to the desired bit length
while all other masks were set to 27 bits. The equations of motion for all
three trajectories were then numerically integrated simultaneously from injec-
tion to the end point at reference perilune without making any observations.

When the estimated and reference trajectories were compared at the time
of reference perilune, tg, the range magnitude between the two end points,
shown in figure 2, gave information showing how position error increased when
the precision was reduced. This curve shows that, as precision is reduced
below about 25 bits, the error that accumulates over the entire trajectory
rises sharply. This tends to limit acceptable word lengths to the range from
25 to 27 bits. However, reference to figure 2 shows that a 25-bit reference
trajectory, for example, would be in error by 18 km which would be unsatisfac-
tory in most cases. This indicates that 26 or perhaps 27 bits would be
required for reference trajectories. On the other hand, estimated trajec-
tories accumulate errors involving the numerical integration of the equations

10
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of motion only between observations and velocity corrections, and this study
has shown that satisfactory results may be expected with precisions as low as
21 bits.

Effect of Word Length on the Optimal Filter

The behavior of the covariance matrix P as a function of word length
is used here as a means of assessing the degradation in the performance of the
filter as characterized by equations (3) through (7). Errors in those calcula-
tions involved in producing the updated P matrix as the result of meking an
observation, that is, operations @, @, @ s , @, and @ in figure 1,
will be detected by Ty and ¥ppg defined in equations (8) and (9). Error
detection will consist of two steps: first, the effect of the transition
matrix on the updating of P(ty) from time ty_, To tp in equation (3), and
second, the effect on P'(ty) in equation (7) will be shown.

Effect of transition matrix on the updating of P(tk).- In table IIT the

quantities frms for both 16 and 27 bits are given Jjust prior to each sequence

of observations and after each velocity correction. Relatively long periods of
time elapse between injection and the beginning of the first sequence of obser-
vations and between each velocity correction and the succeeding observations

sequence. If the transition matrices for these time periods were erroneous for

16 bits it would be expected that Tomg and vrms for 16 bits would differ con-
siderably from its 27-bit counterpart at the beginning of the next observation
sequence., Referring to table III and comparing frms and Grms for 16 and 27

bits in each row of the table before a velocity correction and at the beginning
of the next observation sequence shows clearly that transition matrix effects
are quite small,

Effect of precision on P'(ty).- With the computation of P'(tk) in equa-

tion (7) the optimal filter calculations are complete. If there were signifi-
cant errors due to reduced precision in the calculations leading up to
computation of P'(tk), it would be reasonable to expect that a series of
observations taken close together would lead to serious errors in P’(tk). The
results of four sequences of observations in which the observations were taken
close together is given in table III., However, when frms and vrms are com-

pared at the beginning of an observation sequence and again at the velocity
correction following that sequence, it is seen that these gquantities are not
adversely affected by the reduction of precision from 27 bits to 16 bits. It
is, therefore, concluded that precisions as low as 16 bits would provide
adequate results in the filter computations.

Effect of Word ILength on the Error Propagation Model
The performance of the system in estimating the errors in state is
heavily dependent on the ability to correctly propagate errors at one time into

corresponding errors at a later time. This operation is expressed

11
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mathemetically in equation (1). Since equation (3) is derived directly from
equation (1), it can be seen that the system will not "know' the true error in
estimate 1if @(tk;tk_l) does not correctly represent the way in which errors

propagate from one time to the next.

Figure 2 shows that large deviations of the estimated trajectory from the
reference trajectory develop for the larger reductions in precisions. Yet,
from table III it was shown that the P matrix was virtually invariant with
precision. Therefore, @(tk;tk_l) is at fault and does not represent the true

way in which errors propagate. Since

%
O(tysty. 1) = L/;kk F(t)0(ty 5ty )dt (17)
-1

and since the numerical integration subroutine has high internal precision it
is obvious that any difficulties with @(tk;tk_l) stems from F(t). The end

result of using the transition matrix derived from equation (17) is shown in
figure 3. Here, ¥, the true error in estimate is compared to frms for the
case where all the masks had a 16-bit aperture. It is seen that Frms ands
therefore, P, is much too conservative to adequately represent in a statistical
sense the errors in estimate which actually existed. As a result, the system
believes that its knowledge of the estimated state is better than it really is.
This causes the optimal filter to pay less attention to observatiocnal informa-
tion than it should.

Appendix B gives a method for overcoming the difficulties with F(t), but
its practical value is limited by the requirement of detailed knowledge of the
way in which the individual errors, caused by reduced precision, propagate with
time. For this reason it was not used in this study but is presented as a
method that might be applicable to a less complex problem or in the event
future study should reveal a simple model of the propagation of the reduced
precision errors.

The question of how F(t) is affected by reduced precision is answered by
comparing ®(te;to) for 16 bits with the transition matrix for 27 bits. This
comparison shows that some degradation accumulates when t, and t, are sepa-
rated in time by as much as 12 hours, but for shorter periods of an hour or
less ¢(te;to) is essentially invariant with precision. Therefcre, if long
transition periods are to be encountered, precisions higher than 16 bits are
required in the calculation of F(t).

Effect of Word Length on State Estimation
Through Space-Angle Observations

Navigation with the system being investigated requires observations of
one or more space angles which are related to the vehicle state through the
space-angle geometry. When an observer measures these space angles with an
imperfect instrument, the gquality of the knowledge gained will depend on the
combined instrument and observer accuracies. These actual space angles must

12
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then be fed into a computer. The precision with which the angles are accepted
by the computer is dependent on its word length. In this simulation, the input
precision is controlled by mask 3.

Effect of the space angles.- Two computer runs were made in which mask 3
was 27 bits in one and 16 bits in the other. All other masks remained fixed at
16 bits. The similarity of these runs was such that the maximum position
deviation between the two estimated trajectories was approximately 11 km., This
indicates that bits of lower significance than 16 in the space angles tend to
be ignored in the updating of the estimated state. This implies that little or
no improvement in the estimated state can be expected from increasing the pre-
cision of the space angles unless the precision of X(t) is also increased.
This loss of the lower order bits results in a considerable loss of system sen-
sitivity to position errors since the quantization error in the 16th bit is
quite large in terms of seconds of arc.

Effect of the P matrix.- The effect of a conservative P(ty) matrix on

the correction of the estimated state at (E) in figure 1 may be seen from the
following simplified example: Suppose the state vector is a 1 X 1 and only one
variable is being observed. Then all the matrices are 1 X 1. Suppose also
that the output vector at (:D in figure 1 is the column matrix a. Then the
correction to the estimated state at is K(ty)a which, from equation (6)
using 1 X 1 matrices and dropping the subscript, ty, is

I{a:-i&:i.—P_._a (18)

At time t, both H and Q are constants. Sketch (a) shows how K, and there-
fore, the correction to the estimated state increases with increasing P.
Therefore, a P matrix which is too
conservative will always result in too
A small a correction to the estimated
state even if the actual space angles

& are sufficiently accurate.

31

4H

&+ Errors in correcting the esti-

| mated state.- When the P matrix is a
/ very conservative estimator of the
existing errors and the K matrix
causes large numbers of the least sig-
nificant bits from the space angles to
be ignored, errors in the estimated

o L — 5 = 2 2 state may accumulate rapidly with each
W2 2 e 2 e w2 additional observation, This situation

P
is shown in figure 4 where very large

Sketch (a) peaks develop in the midcourse region
where the rate of change of the space
angles is low.

13



Figure 5 is a plot of F for the 16-bit case shown in figure k.
Included are points before and after each observaticon rather than only after
each observation as in previous plots. The growth of errors between observa-
tion sequences is also shown. Inspection of figure 5 shows that the effect of
some of the observations is to actually make the estimated state worse. When
observations are switched from one body to another in this region, the space-
angle differences are large because of the large deviation between the actual
and estimated state. The first observation of the moon is this sequence
(observation 20) was made with a most dramatic drop in . To examine why a
moon cbservation was so effective, an error ellipsoid is used.

When the P matrix is partitioned into four 3 X 3 submatrices as in
equation (10), the submatrix P, may be represented as a three-dimensional
error ellipsoid of position and, similarly, P, an error ellipsoid of velocity.
The relative magnitude and direction of the axes represent the relative magni-
tudes and directions of the uncertainty at the particular vehicle position in
space.

Changes to the error ellipsoid, as the result of an observation, are
indicative of the knowledge gained from the observation. In particular, these
changes are twofold. First, except when near the observed body, the major
axis of the ellipsoid tends to aline itself with the vector to the observed
body. Second, a reduction in the ellipsoid volume occurs since, by equa-
tion (7), an observation requires that the P matrix must be reduced or left
unchanged. Also, a large reduction in the volume of an ellipsoid implies a
large correction to the estimated state.

Figure 6 shows the position error ellipsoid both before and after obser-
vation 20, Included are vectors indicating directions from the vehicle to
both the earth and the moon. Because of the Immediately preceding four earth
observations, the major axis is only 10° from the vehicle-earth vector and the
ellipsoid is quite elongated. As a result of the moon observation, the elonga-
tion is considerably reduced and the volume is reduced by a factor of 2.4k6.

The orientation of the ellipsoid is skewed toward the vehicle-moon vector.

In summary, the computation of the space angles with precisions greater
than that employed by the K matrix will not improve the ability to correct
the estimated state by a significant amount. Furthermore, the effect of a P
matrix which is too conservative an estimator of the existing errors is to
cause the K matrix to give too low a weight to space-angle information. This
results in corrections to the estimated state which are too small at each
observation. The conservatism of the P matrix may be remedied by correcting
the error propagation model or by augmenting the filter computation as
outlined in appendix B.

Effect of Word Length on Guidance

The evaluation of the effect of precision on guidance was made by con-
sidering the effects on the indicated velocity correction vector, ANG, due to

14




the estimated state and the prediction submetrix, A,. Also considered is the
way 1in which reduced precision affects the actual state through the velocity
corrections.

Effect of precision on AVgp.- Figure 7 shows the magnitude of AVg at

each observation and velocity correction for 16, 18, and 27 bits. The separa-
tion of the curves for the three different precisions at the time of the first
velocity correction (12 hours) is shown to differ from the 27-bit value. The
separation at this time increases rapildly as the precision is reduced and is
to be expected because of the dependence of AVp on £ given in equation (1),
The separation of the three curves at subsequent velocity corrections should
be expected to increase because immediately after the first velocity correc-
tion, if it were perfect, AVg would be zero. The execution of AVp was,
however, not perfect but at least the pointing and cutoff errors in each case
were the same except for the number of least significant bits discarded by the
masking. Therefore, the growth in the magnitude of AV; in the time period
between a velocity correction and the next observation is due to the errors in
determining £ and the errors in executing the velocity correction.

It is interesting to note that the erratic behavior of IANG| is rapidly
reduced with time until about T4.5 hours in the 18-bit case. At this point,
a sharp dip began and was followed a short time later by a second even sharper
dip. Since the computation of AVg depends on the behavior of A;l, a plot
of the determinant of A, was made and is shown in figure 8. Clearly, the
peculiar behavior of the 18-bit case with an 18-bit prediction matrix was
associated with a large dip during which the determinant of A, was negative
for a short while. Also shown is the unusual behavior of the 16-bit case when
a 16-bit prediction matrix was used., Here, the curve becomes negative some-
time after 36 hours and remains so throughout the remainder of the run.

The peculiar behavior of the determinant of Az may be explained as fol-
lows: If infinite precision were used, the product of all the individual
transition matrices between observations and velocity corrections would be
given by

e
T o(t.st

' 13t )05t ) = et st,) = Altgst,) (19)
1=1

e
where T ®(ti;t5-1)2(ts;t,) means
i=1

Q(teBte-l) s e e cI’(1325131)(1)(t:I.Sto)q)(toﬂo) (20)

and
O(ty3to) = I

It is obvious that at the end point the prediction matrix under these ideal
conditions is given by
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Alteste) = =TI (21)

If A, Az’ Al
A2 = A3 = 0, In general, however, the left side of equation (19) does not
equal A(te;ty)e This is because the product of individual piecewise transi-
tion matrices which have been generated from exact initial conditions by numer-
ical integration over successive short-time intervals yields a different final
result than a transition matrix integrated from exact initial conditions over

a time period which is the sum of the successive short-time intervals. There-
fore, at the end point A; and A, do not equal I and also A, and A, do not
equal zero because of accumulated errors. As the trajectory nears the end
point, these errors dominate the situation more and more with the dominance
occurring earlier as the precision is reduced. This can be seen by compari‘son
of the 16- and 18-bit cases in figure 8. The effect of substituting an initial
A matrix generated with 27-bit precision may also be seen by comparing the
16-bit case using a 27-bit initial prediction matrix and the 27-bit case using
a 27-bit A matrix with the 16-bit case results in a curve which is quite
similar to the 27-bit case in which a 27-bit starting A matrix is used.

(Note that determinant of A, is not zero at the end point as would be
expected if infinite precision had been used.)

; and A, are 3 X 3 submatrices, then Al =A, =1 and

The effect on guidance due to the use of a 16- and 27-bit A matrix is
given in table IV, Here it i1s seen that the results with the 27-bit A matrix
are generally better. Furthermore, at the end point the results are markedly
different as would be expected because of the negative determinant of Ao, at
the time of the third correction.

Effect of guidance errors on the actual state.- Although the actual tra-
jectory was computed in full precision, it is affected by the estimated state
through velocity corrections. Table V shows in column 1 the standard 27-bit
case. In column 2 is shown the effect of reducing the precision of the esti-
mated trajectory to 16 bits (mask 2) when all other masks were set to 27 bits.
Column 3 shows the effect when all masks have 16-bit apertures except for
mask 2 which was 27 bits. Columns 4 and 5 show the cases when all masks had
16-bit apertures but different starting prediction (A) matrices. All starting
prediction matrices were 27 bit except for the case shown in column 5 where a
16-bit starting prediction matrix was used. In all columns the magnitude of
r, |r|, is given along with |f|, the magnitude of #. The quantity |7|
is included because Ir depends on the previous value of r. Referring to
equation (lh) we see that the results in column 2 show the effect of X on the
actual state and on the estimated state. Similarly, column 3 shows the effect
of reduced precision on the computation of A;%Al. Column 4 shows the combined

effects of precision on X and on AélAl. Column 5 shows, in addition to that

shown in column Y4, the additional effect on A;¥Al of a 16-bit starting
prediction matrix.
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The end-point results for columns 2, 4, and 5 are obviously unsatisfac-
tory from a guidance point of view. Column 3 is somewhat questionsble and in
general would be considered unsatisfactory. To improve the results in column
3 would require greater precision in forming A; Al

In summary, the prediction matrices generated with precisions of 18 bits
and lower should not be used. In fact, a 27-bit prediction matrix should
always be used if available. Computation of A"lAl in the guidance equation
should be done with the aperture in mask 5 no less than 20 bits.

CONCLUSION

The results of this study show that satisfactory performance of the
navigation and guidance scheme proposed in NASA TN D-1208 and NASA TR R-135
can be accomplished at greatly reduced precision in some general areas and
with lesser reductions in others provided that the increased errors are prop-
erly accounted for. This should allow similar simulations to be carried out
by computers using greater precision only in certain critical areas rather
than throughout the entire simulation as would have been required heretofore.
The general areas and the corresponding precisions required are as follows:

1. The precisioﬁ of the estimated trajectory must be about 21 to 27
bits (mask 2).

2. Reference trajectories require a precision of 26 or 27 bits.

3. The computations embodied in the optimal filter may be computed with
precisions as low as 16 bits (mask 1).

4, The transition matrix @(tk;tk_l) (controlled by mask 4) may be
derived from F(t) where 16-bit precision is used. However, if t; and tpmy
are widely separated in time, the precision should be increased. For
¢{ty;tyx-,) to represent the correct error propagation model requires that
F(t) and/or the filter computations be augmented to take into account the
increase in uncertainty.

5. Increasing the precision of the space-angle computations (mask 3)
over that employed by the weighting matrix, K, was found to produce only a
negligible improvement in the estimated state.

6. The effect of a P matrix which is too conservative an estimator of
the errors in the estimated state is to cause the welghting matrix, K, to give
too little weight to space-angle information. This can contribute to the
build-up of very large errors in the estimated state.

7. Prediction matrices generated with precisions of 18 bits and lower
should not be used. If available, 27-bit prediction matrices should be used.

The computation of A;lAl in the guidance should be done with the aperture in
mask 5 greater than about 20 bits.
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8. The above conclusions lead to the further conclusion that %he
previous studies, which used 27-bits precision throughout, were done with ade-
guate precision,

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Jan. 10, 1966
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APPENDIX A
WORD LENGTH REDUCTTION

In FORTRAN II, floating-point arithmetic is used throughout (except for
indexing and bookkeeping) to maintain the decimal point of numbers automati-
cally. Internally the IBM TO94 uses floating-point binary numbers which are
presented as a signed proper fraction, called the mantissa, times some inte-
gral power of 2, called the characteristic or exponent. The number or com-
puter word is 36 binary bits,* made up, from left to right, of a sign of the
mantissa, an 8-bit characteristic, and a 27-bit mantissa. The precision with
which a number may be represented may be varied by changing the number of
binary bits in the mantissa where 27 i1s the maximum.

The function of the mask is to specify in the Boolean "and" operation the
number of successive least significant bits of the mantissa to be set to zero.
This is done by placing in the corresponding bit of the mask a "1" where a bit
is to be retained and a "O" where a bit is to be discarded. The following
sketch illustrates a masking operation in which a floating-point number, A, is
to be truncated from 27 to 23 bits. If in the sketch the mask is the number,
B, and the truncated result is C, then the masking operation may be described
by the Boolean expression

A*B = C

where the "*" is the "and" operator.

& [1]2JofofoJofofof1] [fofaf1fajofa

B {1Jxlafafafafalafa] (il 1[1]0o]0]0]O

¢ [1faJoJoJojojoof1] [1]oja]afofo]o

Thus, the "and" operation places bit by bit a "1" in C if both A and
B contain a "1," otherwise C 1is set to "0." The net effect, then, is to
retain the bits of A where the corresponding bit in B is a "L

lReference Manual IBM TO94 Data Processing System,
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APPENDIX B

CORRECTION OF P MATRIX TO COMPENSATE FOR INCORRECT

ERROR PROPAGATION MODEL

In order to correct the P matrix to compensate for incorrect error
propagation model, suppose the equations of motion for deviations from the
reference in the 27-bit case are given by the linear differential equation

% = Fx (B1)
where ~
ox
By
0z

X = (BE)
&%

and the ©'s represent deviations from the reference. Now, in reduced pre-
cision, it is assumed that the equations of motion have a term missing which
may be accounted for by the addition of the term prp so that, for the

16-bit case which will be used hereafter as an example, eqguation (B1) becomes
X27 = F X5 prp (B3)

Here is some state vector which is not updated and is active only from
one observation to the next; F is a matrix whose elements are assumed to be
functions of time and the precision of the integration of the equations of
motion. The transition matrices @ and Wle are found from:

€

0,0tito) = [ Fyo(na(ro)ar (k)
tO

¥ (tst0) =fct (1)¥(rg)ar (B5)

where @(7,) and ¥(r ) represent the proper initial conditions.
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The deviations at some later
expressions

and

n

@, (t5t6)%(t0)

Vo (E5t0)%, (8,

time, t, can now be found from the

(B6)

(B7)

Iet x be the vector sum of X and ¥ where X 1s the estimate of x, and
X is the error in the estimate of x. Thus,
x,.(t) = xla(t) + xls(t) (B8a)
x27(t) = X27(t) + 227(t) (B8b)
To simplify writing the following equations, let
%6 = Qle(t3to) (B9a)
Yo = V(i) (B9b)

Sketch (b) is a vector diagram showing the actual, estimated, and refer-

ence states at times 1ty and t.

Estglt)

At (8
Achglt

Esty7(1)
Act(to)

Est{to}

[ —

Rgf(vo)

xgr(t)

Ref(1) Actp7(0

Sketeh (b)

is in error by

The state at ¢

is the result of numerical
integration of the equations of motions
from tpo to t using the initial con-
ditions at When 27-bit precision
is used, the estimated state at t 1is
shown as the point Est27(t). The
estimate of xo7(t), Xo,(t), is the
vector from the reference state, Ref{t),
to Bstor(t). The error in the esti-
mate, Xo7(t), is the vector from
Estp,(t) to Actp,(t) in accordance with
equation (B8b). On the other hand,
when 16-bit precision is used, the
estimated state at t is shown as the
point Est,4(t). In this case, applica-
tion of equation (B8a) does not yield
xo7(t), the true state at t. Instead,
it yields the state at Act,g(t) which

to-

(t) because of the inability of equation (B6) to produce the

true error vector, ic(t) which is given by

%.(t) = %, (¢)

= @laile(to) + *16¥p(to)

+ %(t)

(B10)

21




and, as seen from sketch (b), is related to the true state by
x () = X, (t) + &, (t) (B11)

The true covariance matrix of the error in estimate is defined as

P (t) = E[Z.%, ] (B12)
When (B10) is substituted into (Bl2)
o) = B{5,4(6) + mp(0I1EL(6) + 501 f
= IR, (0] (0) + % (2)x T (2) + xp(2)R75(2) + xp(%), 7 (2)]
= 0, L ()T (86) 10T, + 9, BIE, (o) () 1V,
vy Bl (bo) 1 (60) 107, + ¥ Bl (60)x, " (£0) 107y, (B13)
Let
() = B2 _(+)% (t,)] (B1k)
Pls(t) = ®16P16(to)®?6 (B15)
C(tg) = BlZ,4(t0)x, (to)] (B16)
D(t,) = Blxy(to)x, (t,)] (B17)
Now (B13) becomes
P (t) = P (t) + @lGC(tO)W?G + wlsc(to)T®Ee + v D(E )V (B18)

The matrix C gives the correlation of the vectors ile and Xy Therefore,

C must be updated in order to reflect the change in X due to its transla-
tion in time from t, to t. Thus, at time t, equation (B16) becomes

C(t) = Bl%e(t)x, (t)] (819)
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Substituting for £,(t) from (B10), we have

(8) = B {10,0750 (1) + ¥, 1) Iy () VL, |
- B0, 5, (b0dy (2) ¥y + ¥y (1), 8) ¥E, |

15 |

\T . \.II| —
=0 Cle v, + wlaD(to)Wls (B20)

Returning to sketch (b), the situation is shown where the three trajec-
tories (reference, actual, estimated) have been integrated from t_ to t, but

only k-1

observations have been made. When the kth observation is made at

time t both Pc(t) from (B18) and C(t) from (B20) include information only

from the previous k-1 observations.
Therefore, to avoid confusion, it is
desirable to place an additional sub-
script on t +to indicate whether or
not updating has taken place. Thus,
P(ty_,) and C(ty_,) must be updated to
time tx to include the new knowledge
gained from the kth observation.

*27 (') = Xe7(tk-n) This new knowledge allows the esti-

mated state to be corrected as shown
Sketen (c) in sketch (c).

With Pc(tk_l) known, Pc(tk) is computed from the usual equation

where

Po(ty) = [T - Kty )H(ty) 1P, () (B21)

K(t,) = Pc(tk_l)HT(tk)[H(tk)Pc(tk_l)HT(tk) + At )17 (B22)

To update C(tk_l) to time ty note that from sketch (c)

and also

Roltgoy) = 2o (b y) - R () (B23)

I

Ro(ty) = 2, (t) - &, (ty)

1

x, (1) - % () (B2k)
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From reference 3, the actual observed space angles, y, are given by

y(t) = H(t)x, (v, ) + alty) (B25)

27 tk—l

where q(tk) is the error in measuring the angles. The estimate of the same
space angles, y, 1s given by

¥(ty) = Bz, () (B26)

The error in the estimate of the space angles is given by subtracting (B26)
from (B25). Thus,

y(ty) - §(ty)

Aty ) [ (g ) - 208y )] + alty)

Bty ) %o (0 )+ aly) (B27)

The new estimate of the state at time tk is from reference 3

A

X
16

(ty . )+ Koy ) (e )E (b )+ alty) ] (B28)

2 (tk) =

16

Substituting (B28) into (B24) and using (B23) yields
Xo(ty) = % (g ) - Kty ) [H(t ) Ko (ty ) + alty)] (B29)

which is the equation for updating X, from time ty_, to tx. Before pro-
ceeding with the derivation of C(tk), it is noted that q(tk) is a vector
such that

alt,) = Ela(t)a (1)1 (830)

where Q(tk) is the covariance matrix of the observational errors and is
assumed to be a known function of time, Also, it will be assumed that q(t)
and xp(t) are uncorrelated which results in

Blq(t,)x (4

5 (b )1 =0 (B31)

Now, to find C(t,) equation (B29) is substituted into equation (B19)
and using equation (B31l) it is found that
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i) = B Rl ) () - K U)ol y) + ol T M) |

= Bl (b )%, (b )] - K B(e)Bl=, (6 ) T (8, )]

- K(ty)Elq(t)x, (b )]

= C(ty_,) - K(t )H(ty)C(t, ) (B32)

To find the corrected P matrix, P, where there is increased uncer-

tainty due to increased error in the estimated state, the computational steps

are summarized below:

(1) To update in time from t, to t, compute:

c(t)

I

T T
2 Cledv,  + ¥ Dl )v

P, (t)

P () + 0. (b )T ot ) of D6, )yT
16 MRS Wle + ¥, ClE, 16 + Wle o IIfles

(2) When t dis the time of an observation tk’ then step (l) gives
C(tk_l) and P(tk_l). To update as a result of the observation compute:

P.(t,)

i

[T - K(t)H(t ) 1P (2 )

C(ty)

[T - K(ty)H(tp) IC(t, )

This method allows the P matrix to be corrected for errors due to
reduced precision providing Ep and Xy in equation (B3) can be found.

Unfortunately, this may not be easy even for relatively simple situations.
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TABIE I.- H MATRIX PARTTAIS

9 9 9
oX oY o7
2 2
o Xgylry Yrylyy Lgy - Fry
2 ,.2 2 Y2 2 ;.2 2 Y2 2 ,.2 2 Y2
Rpy(Xgy + Ygy) Rpy(Xgy + Ygy) Rey(Xgy + Ygy)
B _—YE_V___. XEV 0
E B 2 W
Xgy + Ygy gv t YRV
) ~ReXgy -Re¥gy ~Rplgy
E 2 2 2,12 2 2 2,1/2 2 2 2y1/2
Rpy(Rgy - Rg ) Rgy(Rgy - Bg ) Ray(Rgy - By )
2 2
g Xy Tyl Zvy ~ By
2 2 2 (/2 2 2 2 \1/2 2 ) 2 \1/2
RMV(XMV + YMV) RMV(XMV + YMV) RMV(XMV + YMV)
X Xy
Pm 0
) = ) )
XMV + YMV XMV + YMV
T Ve Py “Rylwy
A o 2 2 /2 s .o — 9\1/2 na (p2 2 1/2
- = = - 1 gt - R,_
Ry (Fyy = By ) Ry By~ Fu v By~ B
Rp radius of earth XEV
Ry radius of moon T{E\_f = earth-vehicle vector = (Ypy
7
XEM ! EV
REM earth-moon distance = YEM rXMV
Zm Moon-vehicle vector = Ry - Ry = { Ymv
My
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TABLE II.- OBSERVATION ANGLES

Obsgerved a 8
body
_ -Y _ R
Earth —sin*t <§E¥ sin”* EV sin™ " <§—E
EV. ( =) 2 ,1/2 EV.
Xgy + Ygy)
A - -Y -1/ R
Moon -sin * <;MY sin . MV sin C%J!
Ry (X2 Y2 )1/2 MV.
My oMY
@ = declination of observed body
B = right ascension of observed body
04 = % subtended angle of observed body
Rg = radius of the earth, Ry = radius of the moon
Xpy
REV = earth-vehicle vector = YEV
| %5V |
Xy |
RMV = moon-vehicle vector = YMV = REV - REM
7
| "MV ]
X |
REM = earth-moon vector = | Ymm
ZrM




TABIE III.- COMPARISON OF

Tyms

AND Ty

S

FOR 16 AND 27 BITS

16-bit word length

27-bit word length

i:'I'ms’ vrms’ 1A"'rms’ vrms’
Time, hr Comments km m/s m m/s
At time of first
3.5 ob servat ion 48.57 4,820 L8,62 4,830
Immediately after
12 executing first 16.82 .533 16.83 .533
velocity correction
At time of sixteenth
2k Sbservation h3.21 .700 h3.26 .701
Tmmediately after
36 executing second 9.21 .089 9,23 .089
velocity correction
At time of twenty-
ok eighth cbservation 18.55 -113 18.61 11k
Tmmediately after
2 executing third 6.9k .05k 6.98 .05k
velocity correction
At time of thirty-
Th sixth observation 7'36 07T 7.h0 -078
78.847 | At end point 1.7L .163 1.79 .170
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TABIE IV,- MAGNITUDE OF +, KM

At time of

16 bits
16-bit A matrix

16 bits
27-bit A matrix

Resumption of observations after

first velocity correction 216 201
(24 hours)
Resumption of observations after
second velocity correction 363 T2
(64 nours)
Resumption of observations after
third velocity correction 259 299
(74 nours)
End point (78.847 hours) 1177 571
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Figure 5.- ¥ before and after each observation for 16 bits.
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Figure 6.- Position error ellipsoid before and after moon observation 20.
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Figure 7.- Variation of |AVy| with word lengths of 16, 18, and 27 bits.
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"The aeronautical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless
of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distri-
bution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in con-
nection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from NASA activities
and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Information derived from or of value to
NASA activities but not necessarily reporting the results -of individual
NASA:prpgrammed scientific efforts. Publications include conference
proccedings, monographs, data compilations, handbooks, sourcebooks,
and special bibliographies.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546




